Course outcomes of Chemistry

Year	Paper	Course	
Sem 1	Inorganic Chemistry- 1, CEMA CC-1-1-Th	CO1	 Idea about the structure of atoms, Pauli's Exclusion Principle, Hund's rules and multiplicity, Aufbau principle, Term symbols of atoms and ions. Idea of various types of acid-base concept, Pauling's rules, leveling effect of solvents, Drago-Wayland Equation, Superacids, HSAB principle, pH, buffer, Acid-base neutralisation curves; indicator, choice of indicators. Get elementary idea on standard redox reactions, Nernst equation, redox potentials on complex formation, precipitationand change of pH, redox indicators, redox potential diagram and their applications and various types of electroanalytical methods. The solubility product and common ion effect.
	Inorganic Chemistry- 1, CEMA CC-1-1-P	CO2	 Estimation of carbonate, bicarbonate, hydroxide and free alkali in mixture. Estimation of Fe(II/III), Cu(II), Mn(II) in a mixture by oxidation – reduction titrations.

Organic	CO3	1. Idea of shapes & hybridisation, of
Chemistry		molecules, resonance, inductive
1A		effect, field effect, mesomeric
111		
		effect,resonance energy, bond
		polarization and bond polarizability,
		electromeric effect, steric effect.
		2. MO theory, bonding and
		antibonding interactions, concept of
		HOMO, LUMO and SOMO;
		Concepts of aromaticity,
		antiaromaticity, homoaromaticity;
		non-aromatic molecules; Frost diagram.
		3. Knowledge of VBT and MOT,
		hybridization on bondproperties:
		bond dissociation energy (BDE) and
		bond energy;bond distances, bond
		angles, polarity of molecules and
		dipole moments; relative stabilities
		ofisomeric hydrocarbons.
		4. Knowledge of ionic, radical and
		pericyclic reaction mechanism;
		addition, elimination and substitution
		reactions type, nature of bond cleavage
		and bond formation, curly arrow
		rules in
		representation of mechanistic steps;
		reagent type: electrophiles and
		nucleophiles (elementary idea).
0 .	604	
Organic	CO4	Separation of binary mixture of solids
Chemistry-		based upon solubility, purification of
1, CEMA		any one of the separated components
CC-1-2-P		bycrystallization and determination
		of its melting point.
Physical	CO5	1. Fundamental concept of basics
Chemistry-1		physical chemistry, concept of
		Kinetic Theory and Gaseous state:
		General treatmentof Maxwell's
		distribution of speed and energy,
		Concept of Real gases and equation.
		2. Transport processes such as
		Diffusion and Viscosity.
		Diffusion and Viscosity.

			3. Basic concepts of chemical kinetics, different reactions order, temperature dependence of rate constants andHomogeneous catalysis.
	PHYSICAL CHEMISTR Y, CEMA- CC1-2-P	CO6	 Study of kinetics of decomposition of H₂O₂, Ester. Study of viscosity of unknown liquid (glycerol, sugar) with respect to water. Determination of solubility of sparingly soluble salt.
	Organic Chemistry 1B	CO7	1. Concepts of stereochemistry: Bonding geometries of carbon compounds: concept of asymmetry; Fischer, sawhorse,flying wedge and Newman projection formulae and their inter translations. Concept of chirality and symmetry. 2. Reaction Mechanism, Reactive intermediates: carbocations, nonclassical cabocations, carbanions, carbon radicals,carbenes.
	Organic Chemistry: (1B) P	CO8	Determination of boiling point of organic liquids.
Sem 2	Organic Chemistry- 2, CEMA CC-2-3-Th	CO9	1. Stereochemistry: mainly chirality arising out of stereoaxis, concept of prostereoisomerism, conformation. 2. Reaction thermodynamics, Tautomerism, Reaction kinetics, Substitution and Elimination Reactions, Free-radical substitution reaction.
	Organic Chemistry- 2, CEMA CC-2-3-P	CO10	Organic Preparations, yield percentage calculation
	Inorganic	CO11	1. Chemical bonding: geometry and shape of the molecules, various

	Chemistry,		properties of ionic and covalent
	CEMA CC-		compounds. (i) Ionic bond: size
	2-4-Th		effects, radius ratio rule and its
			application, Packing of ions in
			crystals. Born-Landé equation,Born-
			Haber cycle, Solvation energy. (ii)
			Covalent bond: Polarizing power and
			polarizability, ionic potential, Fazan's
			rules, Lewis structures,
			formalcharge.Valence Bond Theory,
			Bent's rule, Dipole moments, VSEPR
			theory.
			2. Idea about MO concept of bonding
			and MO diagrams of some
			homonuclear and heteronuclear
			diatomic molecules, qualitative idea
			of valence bond and band theories.
			hydrogen bonding, receptor-guest
			interactions etc.
			3. Radioactivity idea of Nuclear
			models: concept of nuclear quantum
			number, magic numbers. Types of
			different types of nuclear reactions
			such as artificial radioactivity,
			transmutation of elements, fission,
			fusion and spallation. radio carbon
			dating, age of rocks and minerals,
			hazards of radiation.
	Ingrania	CO12	1. Estimation of vitamin C, arsenite,
	Inorganic Chemistry,		antimony, available chlorine in
	CEMA CC-		bleaching powder iodimetrically.
	2-4-P		2. Estimation of of Cu in brass, Cr and
	4 -1- 1		Mn in Steel and Fe in cement.
Sem 3	Physical	CO13	1. Concept of Chemical
	chemistry-2		Thermodynamics including the laws
	CEMA-CC-3-5-		of thermodynamics and the
	TH		applications of thermodynamics.
			2. It gives the idea of
			Electrochemistry.
	Physical	CO14	Experiment dealing with instruments
	chemistry-2		such as conductometer, potentiometer
	CEMA-CC-3-5-		and calorimeter.

P		
Inorganic chemistry -3 CEMA-CC-3-6- TH	CO15	1. Idea of modern periodic table, measurement of screening constant, electronegativity, relativistic effect, inert paireffect and group trends. 2. The chemistry of reactivity and relative stability of s and p block elements and their corresponding compounds 3. The chemistry of noble gases especially xenon and their compound are known. 4. Knowledge of some inorganic and organic polymers with synthesis, structural aspects and applications. 5. IUPAC nomenclature and Isomerism of various types of coordination compounds, Werner's theory of coordination complexes, different types of ligands.
Inorganic chemistry -3 CEMA-CC-3-6- P	CO16	1. Separation of the selective metal ions from its binary mixture by complexometric titration and paperchromatographic Separation 2. Estimation of the Ni(II) using dimethylglyoxime (DMG), copper as CuSCN, Al(III) as Al(oxine) ₃ (aluminiumoxinate) by gravimetry.
Organic chemistry -3 CEMA-CC-3-7- TH	CO19	1. chemistry of alkenes and alkynes and the name reactions involved and idea about Electrophilic aromatic substitution, and Nucleophilic aromatic substitution 2. Learning the chemistry of carbonyl compounds in detail and depth including reactions involving exploitation of acidity of α - H of C=O 3. Chemistry of Organometallics, including Grignard reagents, organolithiums etc.
Organic	CO18	1. Learn to identification of pure

	chemistry -3		organic compounds (solids/liquids)
	CEMA-CC-3-7-		by systematic and specialtests
	P		2. quantitatively estimate organic
			compounds like glycine, glucose,
			sucrose etc.
	Sec 2	CO19	1. Biomolecules like carbohydrates,
	(analytical		proteins, lipids, enzymes,
	clinical		lipoproteins and their biochemical
	biochemistry)		nature.
			2. As an analytical tool, analysis of
			samples of blood and urine
			systematically.
			3. Qualitatively and quantitatively
			learn the tehniques of estimation of
			carbohydrates, cholesterol,
C 1	0 '	CO20	proteins, nucleic acids etc.
Sem4	Organic	CO20	1. Learn about the Chemistry of
	chemistry-4 CEMA-CC-4-8-		nitrogen compounds involving
	TH		preparation and reactions of amines, nitro compounds, alkylnitriles and
	111		isonitriles, diazonium salts etc.
			2. Rearrangement reactions involving
			migration to electron deficient
			nitrogen atoms and allied systems
			3. Retrosynthetic analysis:
			disconnections; synthons, strategy of
			ring synthesis, asymmetric synthesis
			etc.
			4. Organic spectroscopy: basic facts
			and formula followed by problem
			solving of structure of
			organiccompounds by the application
			of the knowledge of UV-VIS, IR and
			NMR spectroscopy.
	Organic	CO21	Learn the techniques of Qualitative
	chemistry-4		Analysis of Single Solid Organic
	CEMA-CC-4-8-		Compounds
	P	0000	
	Physical	CO22	1. Various applications of chemical
	chemistry - 3		thermodynamics such as colligative
	CEMA-CC-4-9-		properties and phase equilibria.
	TH		2. Concept of fundamentals of

Physical chemistry - 3 CEMA-CC-4-9- P	CO23	Quantum mechanics with special emphasis of the concept of operators, commutation of operators with examples such as particle in a box. 3. Fundamentals of crystallography and crystal structure. Experimental techniques such as polarimetry, thermometry with phenolwater system and pH-metry.
Inorganic chemistry-4 CEMA-CC-4- 10- TH	CO24	1. Explanation of the relative stability of different d-orbital splitting energy levels of different geometry, spectrochemical series, magnetism and colour with the help of crystal field theory. L-S coupling, orgel diagram and its transition, spectral transitionrule and charge transfer spectra. 2. General characteristics and properties of 3d, 4d, and 5d transition elements. 3. Electronic configuration, oxidation states, colour, spectral and magnetic properties of lanthanides and actinides. 4. The idea of inorganic substitution reaction of square planar and octahedral complexes and the thermodynamic and kinetic stability are also imported to students.
Inorganic chemistry-4 CEMA-CC-4- 10- P	CO25	 Preparation of selective inorganic coordination complexes. determination of 10Dq by spectrophotometric method and λmax value of [Mn(acac)3] and [Fe(acac)3] complexes
Sec 3 (pharmaceutic als chemistry)	CO26	Emphasis of drugs and pharmaceuticals of representative class analgesics agents, antipyretic agents, anti- inflammatory agents and

			(* * 1
			antiviral agents (Central Nervous
			System agents, Cardiovascular,
C -	D1: 1	COST	antileposy, HIV-AIDSrelated drugs
Sem5	Physical	CO27	1. Concept of the various quantum
	chemistry - 4		mechanical systems such as simple
	CEMA-CC-5-		harmonic oscillator, Hydrogen atom
	11- TH		problem and also understand the
			concept of chemical bonding with
			theories such as LCAO and
			BornOppenheimer approximation,
			MO theory.
			2. Concept of Statistical
			Thermodynamics.
			3. Numerical analysis with ideas
			about different numerical methods
		0000	with applications in chemistry.
	Physical	CO28	Computer programs (Using
	chemistry - 4		FORTRAN or C or C ++) based on
	CEMA-CC-5-		numerical methods.
	11- P		
	Organic	CO29	1. Chemistry of polynuclear aromatic
	chemistry - 5		hydrocarbons and their derivatives,
	CEMA-CC-5-		their preparation, conformation
	12- TH		andreactivity of alicyclic compounds
			2. Mechanism, stereochemistry,
			regioselectivity of pericyclic reactions
			3. Idea of biomolecules like
			carbohydrates and amino acids,
			proteins, nucleic acids-their basic
	Omarais	CO20	chemistry, preparation
	Organic	CO30	1. Learn Chromatographic separation
	chemistry - 5		techniques.
	CEMA-CC-5-		2. Analysis of organic spectra to solve
	12- P		structural problems on organic
	DCE A 2:	CO31	compounds.
	DSE-A-2:	CU31	1. Learn Computer Programming Basics on (FORTRAN):
	Applications		1
	ofcomputers in chemistry		2. Spreadsheet Software (MS Excel) 3. Applysis of the Statistical data by T
	Chemistry		3. Analysis of the Statistical data by T test and the F test.
			4. Practicals.
	DSE-B-1:	CO32	1. Discussion about the Silicate
	DSE-D-1;	CU32	1. Discussion about the Silicate

Inorganic		Industries, Fertilizers, Surface
	of	Coatings on the materials and their
industrial	, <u> </u>	application.
importance		2. Introduction of Solidstate
Importance		electrolyte, battery, Fuel cells, Solar
		cell and polymer cell.
		3. Different catalysis and their activity
		in industrial application and
		introduction about explosives.
		4. Practical application of the
		materials
Sem 6 Inorganic	CO33	1. Know the role and fuctions of metal
chemistry-5		ions (specially Na+ , K+ , Mg2+, Ca2+,
CEMA-CC-6-		Fe3+/2+, Cu2+/+, and Zn2+),
13- TH		metalloprotiens andchelation effect of
		some metals (Pt, Au) as drugs for
		different diseases.
		2. It gives the idea of structure and
		chemistry of several organometallic
		complexes.
Inorganic	CO34	Identification the compositions (basic
chemistry-5		and acid radical) of unknown
CEMA-CC-6-		inorganic mixtures by
13- P		qualitativesemimicroanalysis.
Physical	CO35	1. Learn the Concept of Molecular
chemistry-5		spectroscopy such as rotational and
CEMA-CC-6-		vibrational spectroscopy, surface
14- TH		phenomena suchas adsorption,
		surface tension and colloids.
		2. Learning of the concept of
		Photochemistry and Theory of
		reaction rate.
		3. Development of concept on Dipole
		moment and polarizability.
Physical	CO36	Experiments involving colorimetry,
chemistry-5		spectrophotometry and experiments
CEMA-CC-6-		related to surface tension aswell as
14- P		determination of CMC of micelles.
DSE-A-3:	CO37	1. Discussion about the green
Green		chemistry and green synthesis the
chemistry and	d	future trends of green chemistry for
chemistry o	of	sustainability.

natural		2. Acquire knowledge on the
products		chemistry ofnatural compounds like
		terpenes and alkaloids.
		3. Carry out six green syntheses in the
		laboratory
DSE-B4:	CO38	1. Carry out research /review on a
Dissertation		topic as assigned.
		2. Preparation of project report and
		digital presentation