Rammohan College

Department of Mathematics

<u>UNDERGRADUATE SECTION</u>

Model Reference: University of Calcutta, Syllabus for Mathematics (Honours)

CBCS

Programme Outcomes Nos.	Programme Outcomes (PO)
PO. 1	To prepare the students for a successful career in teaching or other professions as well as to motivate them for higher education and to take research as a career.
PO.2	To provide strong foundation in basic sciences and mathematics.
PO.3	To identify, formulate and analyse complex scientific problems reaching substantiated conclusions.
PO.4	To develop individual and team work by functioning effectively as an individual or as a member in a group in computer laboratory classes.
PO.5	To develop computational , logical and analytical ability in solving different problems of Mathematics
PO.6	To develop communicating ability, prepare effective presentations, and give and receive clear instructions
PO.7	To develop the ability to engage in independent and life-long learning in the current context of technological change
PO.8	To inculcate scientific temperament in the young minds and outside the scientific community. This helps to develop skills for employment, internships and social activities.

Programme	Programme Specific Outcomes (PSO)
Specific	
Outcomes Nos.	
PSO.1	Understand the fundamental concepts in mathematics and develop ideas based on them. Have a strong foundation in algebra, analysis and calculus leading to pursuing postgraduate studies in mathematics, theoretical physics, statistics etc.
PSO.2	To develop leadership and managerial skills and understanding the need for lifelong learning to be a competent professional.
PSO.3	Be motivated towards research in mathematics and related fields.
PSO.4	Possess advanced knowledge on topics in pure mathematics, empowering her/him to pursue higher degrees at reputed academic institutions. Where in future they can work as Research Assistants, data analysts, Subordinate Statistical Service cadre under the ministry of Statistics and programme implementations, GOI.
PSO.5	Eligible for teaching in primary and secondary schools.
PSO.6	Demonstrate problem-solving skills, innovative thinking, creativity and programming capability in C++.
PSO.7	Enhance their employability for Government jobs like banking, Insurance and Investment sectors (both in public and private enterprises).

1st Semester Honours.

NO.	PAPER	Course Outcome						
CO.1	Core Course-1	After successful completion of the course, students learn the						
	Calculus, Geometry	techniques to compute limits, derivatives and integrals of a						
	& Vector Analysis	function and also the applications of vector algebra in real life						
		problems. The knowledge of Geometry (2 Dimension and 3						
		Dimension) will help the students to compare 2D shapes and 3D						
		objects of our real environments						
CO.2	Core Course-2	Learning algebra helps to develop one's logical thinking's, abstract						
	Algebra	problem solving, pattern recognition, reasoning and networking						
	O							

2nd Semester Honours.

NO.	PAPER	Course Outcome						
CO.3	Core Course-3	Learn the fundamental properties of the real numbers that						
	Real Analysis	nderpin the formal development of real analysis. Also get an idea						
		of the theory of sequence, series &continuity						
CO.4	Core Course-4	Students learn to extend group structure to finite permutation						
	Group Theory-I	groups and also to generate groups under given specific						
		conditions. It's also help to study LS space and String theory.						

3rd Semester Honours.

NO.	PAPER	Course Outcome					
CO.5	Core Course-5	The subjects enable students to acquire knowledge about how to					
	Theory of Real	compute and analyze limits, continuity& differentiability of					
	Functions	functions.					
CO.6	Core Course-6 On successful completion of this course, the students will be all						
	Ring Theory &	to analyse ring theory and to use the axioms that define a ring and					
	Linear Algebra-I	also to know the basic properties of rings arising from these					
		axioms.					
		They learn to compute and use eigenvectors and eigen values &					
		also Cayley-Hamilton theorem and its use in finding the inverse of					
		a matrix.					

NO.	PAPER	Course Outcome					
CO.7	Core Course-7	From this course students will learn to classify ODEs and able to					
	ODE & Multivariate	visualize and manipulate ODEs in numerical, and symbolic form.					
	Calculus-I	Students will understand the concepts of existence and					
		uniqueness of solutions.					
		Students get the idea on maximal and normal property of the					
		gradient, tangent planes, optimization problems and also to help					
		them to develop the ability to solve problems using multivariate					
		calculus.					
CO.8	Skill Enhancement	Students get the complete knowledge of C \C++ language and					
	Course-A	using numerical methods they will be able to write programmes					
	C Programming	in C.					
	Language						

${\bf 4^{th}\ \ Semester\ Honours}.$

NO.	PAPER	Course Outcome				
CO.9	Core Course-8 Riemann Integration & Series of Functions	They learn about theory and applications of Riemann Integration of bounded real valued functions, integrability of sum, scalar multiple, product, quotient, modulus of Riemann integrable functions and properties. They also gets knowledge on convergence of improper integrals, power series& it's convergence and sum of Fourier series. It builds idea over Fundamental theorem of calculus.				
CO.10	Core Course-9 PDE & Multivariate Calculus-II	Learn to formulate physical problems as PDEs and understand analogies between mathematical descriptions of different (wave) phenomena in physics and engineering. Learn the concept of upper sum, lower sum, upper integral, lower-integral, the double integral and also the computational techniques to determine volume and surface area by multiple integrals which helps in volume calculation in various dimensions.				

CO.11	Core Course-10	After completion of this course students can solve various problems				
	Mechanics	of engineering worlds like mechanical, civil eng. & also space science				
		related problems. Here students get the knowledge on the motion				
		of mechanical systems and their degrees of freedom. They study				
		the interaction of forces between solids in mechanical systems,				
		Centre of mass and inertia of mechanical systems				
CO.12	Skill Enhancement	After completion of the course students are able to install and read				
	Course-B	ata files in R/ SageMath. They will also learn to perform various				
	Scientific computing	operations and apply the common functions to manipulate and				
	with SageMath/ R	analyze data using basic R/SageMath. It's also develop better				
		understanding for graphical visualisation.				

5th Semestar Honours.

Sl. No.		Course Out Come
2271707	Paper	004150 040 054110
CO.13	Core Course-11	They will be able to calculate probabilities using Conditional
	Probability & Statistics	probability, rule of total probability and Bayes' theorem, concept of random variable, probability distributions and to analyze statistical
		data.
CO.14	Core Course	Learn the applications of factor groups to automorphism groups,
	12	external direct product and its properties, Inner product spaces, dual
	GroupTheory	spaces and diagonalization of symmetric matrices.
	-II & Linear	
	Algebra-II	
CO.15	Discipline	Here our students should have an enhanced knowledge and
	Specific	understanding of mathematical modeling and statistical methods in the
	Elective- A	analysis of biological systems, be better able to assess biological
	(1) Bio	inferences that rest on mathematical and statistical arguments.
	Mathematics	
CO.16	Discipline	After successful completion of this course Students will learn the
	Specific	techniques for modeling and solving many real-world operational
	Elective-B	problems. Here they studied the inequalities and convex sets, primal
	(1)	simplex method & duality, integer programming and the two-person
	Linear	zero sum problems/ matrix games. This also provides knowledge
	Programming &	over developing computer games in future.
	Game Theory	

6th Semestar Honours.

Sl.No.	Paper	Course						
		Out Come						
CO.17	Core Course-13	They will learn the concept of a metric space and be able to						
	Metric Space &	recognize standard examples, fundamental notions of continuity,						
	Complex Analysis	convergence and compactness.						
		Here they can identify curves and regions in the complex plane						
		defined by simple expressions, basic properties of complex						
		integration. They also learn when a function is analytic.						

CO.18	Core Course-14 Numerical Methods	Students learn to derive numerical methods for various mathematical operations and tasks, such as interpolation, differentiation, integration, the solution of linear and nonlinear equations, and the solution of differential equations.				
CO.19	Core Course-14 Practical Numerical Methods Lab	In this course the students interact with computer & learn to compute the values of any mathematical task with the help of the numerical methods like, interpolation, differentiation, integration, the solution of linear and nonlinear equations and the solution of differential equations with the help of computer software programming.				
CO.20	Discipline Specific Elective- A (2) Mathematical Modeling	The course provides rigorous instruction in fundamental mathematical concepts and skills presented in the context of real-world applications like mathematical logic, networking, operation research.				
CO.21	Discipline Specific Elective- B (2) Point Set Topology	Here they learn about Topological spaces, basis and sub-basis for a topology, countability, connected spaces and the concept of compactness in metric space.				

Mapping of CO and PO

COURSE	COURSE		PROGRAMME OUTCOME						
DURATION	DETAIL		PO-						
		1	2	3	4	5	6	7	8
	CO-1	V	V	V		V	V		V
Semester I	Calculus, Geometry & Vector Analysis								
									$\sqrt{}$
	CO-2								
	Algebra								

COURSE DURATION	COURSE DETAIL	PROGRAMME OUTCOME PO-									
		1	2	3	4	5	6	7	8		
a	CO-3	V	V	V		V		V	V		
Semester II	Real Analysis CO-4	√	√	V				√ V	V		
	Group Theory-I										

COURSE	COURSE		PROGRAMME OUTCOME								
DURATION	DETAIL	PO-									
		1	2	3	4	5	6	7	8		
Semester III	CO-5 Theory of Real Functions	1	1	1		1			1		
Semester III	CO-6 Ring Theory & Linear Algebra-I	V	V	V		V		1	√		
	CO-7 Ordinary Differential Equation & Multivariate Calculus-I	V	V	V				V	V		
	CO-8 C Programming Language	1		V	V	V	V	V	1		

COURSE	COURSE	PROGRAMME OUTCOME										
DURATION	DETAIL		PO-									
		1	2	3	4	5	6	7	8			
	CO-9	V	V	1		V						
Semester IV	Riemann Integration & Series of Functions											
	CO-10	√	V	1				1	$\sqrt{}$			
	Partial differential equation & Multivariate Calculus-II											
	CO-11	1	V	1				1	1			
	Mechanics											
	CO-12	1		1		1	$\sqrt{}$	1	$\sqrt{}$			
	Scientific computing with SageMath& R											

COURSE	COURSE		PROGRAMME OUTCOME							
DURATION	DETAIL	PO-								
		1	2	3	4	5	6	7	8	
	CO-13		V	V		V	1			
Semester V	Probability & Statistics									
	CO-14								$\sqrt{}$	
	Group Theory-II & Linear Algebra-II									
	CO-15		V	V		V				
	Advanced Algebra									
	CO-16								$\sqrt{}$	
	Linear Programming & Game Theory									

COURSE DURATI	COURSE DETAIL	PROGRAMME OUTCOME									
ON		PO-									
		1	2	3	4	5	6	7	8		
	CO-17	V	1	V		V	√	1	V		
Semester	Metric Space & Complex Analysis										
VI	CO-18 Numerical Methods				1	1	1				
	CO-19 (Practical) Numerical Methods Lab	V		1	V	V	1	V	V		
	CO-20 Differential Geometry	V	V	1		V		V	V		
	CO-21	V	V	V		V	V	V	V		
1	Point Set Topology										